Localization Reliability Improvement Using Deep Gaussian Process Regression Model

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Process Regression Plus Method for Localization Reliability Improvement

Location data are among the most widely used context data in context-aware and ubiquitous computing applications. Many systems with distinct deployment costs and positioning accuracies have been developed over the past decade for indoor positioning. The most useful method is focused on the received signal strength and provides a set of signal transmission access points. However, compiling a man...

متن کامل

Deep Gaussian Process Regression (DGPR)

A Gaussian Process Regression model is equivalent to an infinitely wide neural network with single hidden layer and similarly a DGP is a multi-layer neural network with multiple infinitely wide hidden layers [Neal, 1995]. DGPs employ a hierarchical structural of GP mappings and therefore are arguably more flexible, have a greater capacity to generalize, and are able to provide better predictive...

متن کامل

Scalable Gaussian Process Regression Using Deep Neural Networks

We propose a scalable Gaussian process model for regression by applying a deep neural network as the feature-mapping function. We first pre-train the deep neural network with a stacked denoising auto-encoder in an unsupervised way. Then, we perform a Bayesian linear regression on the top layer of the pre-trained deep network. The resulting model, Deep-Neural-Network-based Gaussian Process (DNN-...

متن کامل

Distributed Gaussian Process Regression Under Localization Uncertainty

In this paper, we propose distributed Gaussian process regression for resource-constrained distributed sensor networks under localization uncertainty. The proposed distributed algorithm, which combines Jacobi over-relaxation and discrete-time average consensus, can effectively handle localization uncertainty as well as limited communication and computation capabilities of distributed sensor net...

متن کامل

Cautious Model Predictive Control using Gaussian Process Regression

Gaussian process (GP) regression has been widely used in supervised machine learning for its flexibility and inherent ability to describe uncertainty in the function estimation. In the context of control, it is seeing increasing use for modeling of nonlinear dynamical systems from data, as it allows the direct assessment of residual model uncertainty. We present a model predictive control (MPC)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sensors

سال: 2018

ISSN: 1424-8220

DOI: 10.3390/s18124164